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Abstract

Self-supervised learning for time-series data holds potential similar to that re-1

cently unleashed in Natural Language Processing and Computer Vision. While2

most existing works in this area focus on contrastive learning, we propose a con-3

ceptually simple yet powerful non-contrastive approach, based on the data2vec4

self-distillation framework. The core of our method is a student-teacher scheme5

that predicts the latent representation of an input time series from masked views of6

the same time series. This strategy avoids strong modality-specific assumptions7

and biases typically introduced by the design of contrastive sample pairs. We8

demonstrate the competitiveness of our approach for classification and forecast-9

ing as downstream tasks, comparing with state-of-the-art self-supervised learning10

methods on the UCR and UEA archives as well as the ETT and Electricity datasets.11

1 Introduction12

Time series are a ubiquitous data resource in numerous application domains, ranging from finance13

and healthcare to environmental monitoring and manufacturing. Understanding and harnessing their14

inherent patterns is the driving force behind standard tasks like predictive analytics, forecasting, and15

anomaly detection. Despite a notable body of work on deep learning techniques for time-series16

analysis [17, 23, 31], more traditional methods like XGBoost [7] and handcrafted features continue to17

play a pivotal role, often setting the gold standard in supervised learning and forecasting [18, 26, 34].18

In particular, learning universal representations remains a fundamental challenge for temporal data.19

Given recent breakthroughs in Natural Language Processing (NLP) and Computer Vision (CV), the20

paradigm of self-supervised learning (SSL) has the potential to become a game changer in the area of21

time series as well. While huge amounts of unlabeled temporal data exist in many business sectors, it22

is fair to say that research in this direction and practical feasibility are still not mature.23

A popular line of work on SSL for time series focuses on contrastive methods, aiming at robust data24

representations by training neural networks to differentiate between positive (similar) and negative25

(dissimilar) pairs of samples. Few prominent examples are TS2Vec [32], T-Loss [14], TS-TCC [13],26

and TNC [30]; see [24, 36] for recent surveys of the field. Although the effectiveness of contrastive27

methods has been demonstrated on several benchmark datasets, e.g., see [24], the design of positive28

and negative samples for time series is not straightforward. Indeed, common augmentation strategies29

from CV and NLP are not easily transferable, as modality-specific characteristics like temporal and30

multi-scale dependencies need to be considered. As a consequence, the performance of existing31

methods often strongly depends on the specific use case and task.32

Non-contrastive methods are a promising remedy for addressing this lack of flexibility. As the name33

suggests, this class of algorithms focuses on pretext tasks that encourage a model to learn meaningful34

data representations without the explicit construction of positive and negative sample pairs. While35

there exists a variety of non-contrastive SSL approaches in CV and NLP, e.g., see [2, 5, 6, 8, 15, 33],36

they found much less attention in the time-series domain. In fact, existing work mostly focuses on37
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Figure 1: Illustration of our data2vec-based training pipeline. In teacher mode, the encoder computes
a target representation of the full input time series by averaging the hidden activations of the last K
encoder layers (shaded in blue). In student mode, this representation is then predicted by encoding
(multiple) versions of the same input with randomly masked timestamps (shaded in red). As common
in self-distillation schemes, the teacher’s weights follow the student’s weights according to an EMA.

“classical” unsupervised learning techniques like autoencoders [9, 22, 25], see [24, 36] for a broader38

overview.39

The present work makes further progress on non-contrastive learning for time-series data and presents,40

to the best of our knowledge, the first method based on self-distillation. Our main contributions can41

be summarized as follows:42

1. We propose a conceptually simple non-contrastive learning strategy for time-series data43

by adopting the recent data2vec framework [2]. The underlying idea is to leverage a44

student-teacher scheme to predict the latent representation of given input data based on a45

masked view of the same input. Unlike contrastive methods, no modality-specific designs46

are required in this process. On a larger scope, we underpin the main promise of data2vec47

(originally considered for vision, language, and speech) to provide a seamlessly extendable,48

modality-agnostic framework.49

2. We demonstrate the effectiveness of our method for classification and forecasting down-50

stream tasks. In comparison with several existing SSL approaches, we report state-of-the-art51

performance on the UCR [10] & UEA [3] benchmark archives for classification as well as52

on the ETT [37] & Electricity [16] datasets for forecasting.53

2 Methodology54

Self-distillation training objective. Our training strategy closely follows the SSL approach of55

data2vec [2], which proposes a simple, yet effective self-distillation scheme. The teacher model56

provides a target representation of given input data, which the student model is supposed to predict57

from masked versions of the same input; see Figure 1 for an illustration. More specifically, the target58

representation is computed by averaging the hidden activations over the last K layers of the teacher59

model, which was found to stabilize the training dynamics [2]. Similarly to related self-distillation60

frameworks like BYOL [15] or DINO [6], the teacher’s weights follow the student model according61

to an Exponential Moving Average (EMA) mechanism during training. We argue that data2vec is62

well-suited for our purposes because of its simplicity and generalizability. Our simple timestamp63

masking strategy particularly bypasses the limitations and unintentional biases that typically occur64

when handcrafting positive and negative samples in contrastive methods.65
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Table 1: Summarized results for time-series classification using accuracy as metric. We report the
average scores over all datasets of each archive (128 datasets for UCR and 30 datasets for UEA,
respectively). See Table 3 and 4 in Appendix C for the full results.

Ours TS2Vec [32] Ti-MAE [22] T-Loss [14] TNC [30] TS-TCC [13] TST [35]

UCR 0.832 0.829 0.823 0.806 0.761 0.757 0.638
UEA 0.738 0.704 - 0.658 0.670 0.668 0.617

For a more detailed introduction to data2vec and an in-depth analysis of its design choices, we refer66

to the original paper [2] as well as its successor data2vec 2.0 [1]. Moreover, we point out some67

differences between our approach and the original framework in Appendix A.68

Encoder architecture. A notable difference from the original data2vec scheme is our choice of69

encoder backbone: instead of a transformer-based model, we employ a Convolutional Neural Network70

(CNN). This design choice aligns our approach closer with existing (contrastive) SSL methods for71

time-series data and allows for a more direct comparison. Our specific architecture is inspired by72

the TS2Vec encoder [32], which proposes a cascade of residual convolutional blocks. Here, the l-th73

block applies two consecutive 1D convolutions with dilation parameter 2l to enlarge the receptive74

field over the temporal axis. At the same time, a suitable padding scheme ensures consistent feature75

dimensionality from layer to layer, which is key to the hierarchical contrastive loss function developed76

in [32]. Our learning protocol also exploits this consistency albeit in a different way, namely by77

computing the averaged target representation vector over the last K layers. In contrast to the original78

TS2Vec architecture, we have incorporated batch normalization after each convolutional layer as well79

as a tunable scaling factor for the weight initialization, both of which enhanced the stability of our80

self-distillation training pipeline.81

Finally, let us emphasize that the representations produced by our CNN encoder are still sequential,82

i.e., one feature vector is computed per timestamp. While this is analogous to transformer-based83

encoders, our feature vectors get “contextualized” by exponentially increasing the dilation parameter84

instead of using self-attention layers.85

3 Experimental Results86

We assess the effectiveness of our method with respect to its downstream task performance in87

time-series classification and forecasting. Our basic experimental setup follows a simple two-step88

procedure for each considered dataset: (1) learning the encoder in a self-supervised fashion without89

any labels, and (2) training a task-specific layer on top of the learned representations, while the90

encoder’s weights are frozen. This protocol is closely aligned with the one of TS2Vec [32], which91

will serve as our primary reference point for comparison with state-of-the-art SSL methods;1 see92

also [24] for an independent benchmarking study.93

It is well-known that self-distillation is prone to representation collapse, which is why we performed94

a preliminary hyperparameter optimization (HPO) on a small subset of the UCR archive to select95

important training parameters like the learning rate or EMA parameters. In the actual experiments,96

all hyperparameters (including the CNN encoder architecture, which is not tuned) remain fixed and97

consistent. For more details on the experimental setup and implementation, see Appendix A.98

Time-series classification. In this standard downstream task, each time-series instance is associated99

with a single label to be predicted. To obtain instance-level representations, we first perform a max-100

aggregation over all timestamps. The resulting (fixed-size) feature vector is then used as input for an101

SVM head with RBF kernel, which is trained on the labeled dataset. Following [32], we benchmark102

our approach on the UCR archive [10] and UEA archive [3], which consist of 128 (univariate) and 30103

(multivariate) datasets, respectively.104

Our experimental results are summarized in Table 1. For the UCR archive, we have also included105

the scores reported for Ti-MAE [22], which is a recent non-contrastive approach based on a masked106

autoencoder. We conclude that our data2vec scheme is highly competitive with existing SSL methods,107

1The reported scores for all comparison methods—not only TS2Vec—are taken from [32]; see Appendix B
for more details.
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Table 2: Summarized results for time-series forecasting using mean squared error (MSE) and mean
absolute error (MAE) as metrics. For each dataset, we report the average scores over all values of H
(= number of future observations to be predicted). See Table 5 and 6 in Appendix C for the full
results, including more comparison methods.

Ours TS2Vec [32] Informer [37] LogTrans [21] TCN [4]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

U
ni

va
ri

at
e ETTh1 0.1303 0.2744 0.1104 0.2524 0.186 0.3468 0.196 0.3646 0.2628 0.4314

ETTh2 0.1445 0.2944 0.1698 0.321 0.204 0.3582 0.2174 0.391 0.2186 0.3616
ETTm1 0.0741 0.1952 0.069 0.1864 0.2412 0.382 0.2702 0.4164 0.1998 0.3488
Electricity 0.3263 0.4243 0.4864 0.4246 0.6072 0.4712 0.7952 0.5652 0.6726 0.5098

Avg. 0.1688 0.2971 0.209 0.296 0.31 0.39 0.37 0.434 0.338 0.413

M
ul

tiv
ar

ia
te ETTh1 0.667 0.616 0.788 0.646 0.907 0.739 1.043 0.89 1.021 0.816

ETTh2 0.716 0.65 1.567 0.937 2.371 1.199 2.898 1.356 2.574 1.265
ETTm1 0.506 0.522 0.628 0.553 0.749 0.64 0.965 0.914 0.818 0.849
Electricity 0.297 0.392 0.33 0.405 0.589 0.548 0.35 0.41 0.355 0.42

Avg. 0.546 0.545 0.828 0.636 1.154 0.781 1.314 0.892 1.192 0.837

slightly outperforming TS2Vec on UCR and even more clearly on UEA. Here, the UEA archive can108

be considered more challenging due to its multivariate nature.109

Time-series forecasting. Given a time series up to a certain timestamp, forecasting aims to110

predict future observations. Our downstream protocol first extracts the last encoded feature vector111

(corresponding to the last observed timestamp), which is then used as input to train a ridge regression112

head that predicts the next H observations. Adopting the experimental setup of [32] again, we113

consider three versions of the ETT datasets [37] as well as the Electricity dataset [16], both in the uni-114

and multivariate setting.115

Our results are summarized in Table 2. While our data2vec approach is consistently competitive in116

the univariate case, we highlight a notable improvement in MSE on Electricity and ETTh2. Similarly117

to classification, the performance gain becomes even more striking in the multivariate case, for which118

we report superior results across almost all datasets.119

4 Discussion120

This work provides initial evidence for the effectiveness of SSL via self-distillation in the time-121

series domain. Our experimental study particularly demonstrates that state-of-the-art performance in122

classification and forecasting is achievable without strong modality-specific assumptions, which are123

typically made by contrastive methods.124

Scope and limitations. Despite competitive empirical results, the scope of our work is linked125

to the limitations of the considered benchmark archives. Although these datasets are diverse and126

widely used in the related literature, we believe that they are not perfectly suited for an assessment of127

large-scale (deep-)learning methods, especially SSL and pre-training techniques. For example, the128

UCR archive contains rather small datasets, some of which have quite degenerated train/test splits,129

resulting in noisy and insignificant evaluations regardless of the used learning algorithm. A specific130

limitation of our self-distillation framework is its sensitivity to the training parameters. In fact, to131

produce robust representations and prevent model collapses, additional hyperparameter tuning is132

required in advance.133

Outlook and challenges. Obvious avenues of future research are the exploration of other non-134

contrastive methods as well as different types of encoder backbones. In the bigger picture, we argue135

that large-scale experiments are indispensable to unleash and certify the power of (SSL) deep-learning136

methods for time-series analysis. To catch up with the more mature fields of CV and NLP, perhaps137

the most important challenge is the creation of large, inhomogeneous cohorts of (publicly available)138

time-series data; see TimeGPT [27] for a very recent effort in that direction. Beyond that, we believe139

that more fundamental modality-specific research is required for future breakthroughs. For instance,140

temporal data still lacks a unified tokenization strategy, unlike NLP and CV where well-established141

tokenizers are crucial to the current success of Large Language Models and Vision Transformers [12].142
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A Additional Implementation Details231

This part complements Section 3 and describes more details on the implementation of our experiments232

as well as some specific design choices.233

Datasets. All considered datasets are accompanied by predefined splits, which we adopt to ensure234

direct comparability with the other methods.235

The UCR archive [10] has established itself as a standard benchmark in time-series classification,236

providing a collection of 128 univariate datasets from various fields such as finance, healthcare, and237

climatology. The UEA archive [3] is similarly diverse with the important difference that it contains238

multivariate datasets, and can therefore be seen as more challenging.239

The ETT datasets [37] provide hourly energy consumption metrics and are widely used as a forecasting240

benchmark. We consider the versions ETTh1, ETTh2, and ETTm1 in the uni- and multivariate case.241

The Electricity dataset [16] records high-frequency household electricity consumption data. Its size242

and complexity make it a suitable testbed for time-series representation learning techniques as well.243

Downstream evaluation. For time-series classification, we follow the experimental setup of [32],244

which is based on the standard SVM implementation of scikit-learn, specified to an RBF kernel245

and a one-vs-rest strategy for multiclass classification; each evaluation step involves a simple grid246

search cross-validation to optimize for the SVM regularization parameter C. We perform downstream247

evaluations at regular intervals during pre-training to assess the quality of our learned representations.248

The validation accuracy of the best evaluation then yields the final performance score.249

Our approach to time-series forecasting is analogous. Here, we use the standard ridge regression250

module of scikit-learn, tuning the regularization strength alpha through a grid search cross-251

validation in each downstream evaluation.252

Hyperparameters and pre-training. Across all experiments, we use the Adam optimizer [19]253

and set the training batch size to 8. Following data2vec, we use a Smooth L1-loss to measure the254

distance between the teacher’s representation targets and the student’s predictions.255

For the pre-training phase, we ensure that each dataset undergoes an equivalent number of time steps.256

This means that the total number of training steps is proportional to the length of the time series. We257

also include a warmup phase, using the OneCycle learning rate scheduler to prevent overfitting on258

local minima and to allow sufficient time for the batch normalization to adjust. To address the higher259

dimensionality of the UEA datasets, we crop each input time series to a random window of size 1024.260

These windows are selected independently for each sample and every training iteration. Similarly, for261

forecasting, we use a cropping window size of 200, which is consistent with TS2Vec.262

To stabilize our self-distillation approach, some important training parameters are selected through a263

preliminary HPO. As auxiliary validation metric, we apply our representation learning method to264

8 UCR datasets and measure the average accuracy achieved by training a simple logistic regression265

classification head. The tuned hyperparameters are as follows: learning rate & scheduler warm-up266

parameter, weight decay, EMA parameters, block masking probability, encoder dropout rate, scaling267

factor for the random weight initialization of the encoder, and the β-parameter of the Smooth L1-loss.268

The selected parameters are used consistently over all experiments described in Section 3.269

All experiments were conducted on a Kubernetes Cluster hosted on Google Cloud Plattform, using270

NVIDIA Tesla T4 GPU accelerators. PyTorch [29] and Lightning are used as underlying deep271

learning framework.272

data2vec and CNN encoder. Compared to the original data2vec framework [2], we also incor-273

porate some extensions from data2vec 2.0 [1]. The first adaptation is a block masking algorithm,274

which is a simplification of the inverse masking technique proposed by data2vec 2.0. Our approach275

iterates through each (student) batch of time series data until the cumulative proportion of masked276

blocks marginally exceeds a predefined masking probability. In every iteration step, we inject a new277

masked block into each time series, where the size and location of this block are randomly selected278

and bounded by the missing blocks. This ensures that each time series of a batch has masked blocks279

that vary in size and position, thereby enhancing the robustness of the representation learning process.280

Note that the masking probability was tuned through our preliminary HPO.281
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A second notable adoption from data2vec 2.0 is the use of multiple student representations to amortize282

the costs of the teacher model computation. In our experiments, the number of students is consistently283

set to 3.284

We update the teacher weights according to an EMA:285

wteacher ← (1− δ) · wstudent + δ · wteacher.

The update parameter δ starts at 0.9996 and linearly increases to 0.99996 over the training process.286

These choices were proposed by our preliminary HPO, but it is noteworthy that the numerical values287

differ only in the least significant digits from the ones reported in data2vec [2].288

For the CNN encoder described in Section 2, we use 7 residual convolutional layers, which equals289

the number of layers K over which the data2vec teacher model computes its representation, i.e., all290

hidden encoder blocks are used for the averaging. The feature dimension in the representation space291

is set to 320 (per timestamp), which equals the choice of TS2Vec.292

B Comparison Methods293

Below, we briefly describe all comparison methods considered in Section 3. Our selection is adopted294

from [32], which is also the origin of the scores reported in this work (except for our method and295

Ti-MAE [22]). We refer to [32] for reproduction details of each method as well as a more extensive296

discussion of conceptual differences between them.297

Comparison methods for classification:298

• TS2Vec [32] proposes a contrastive method that learns contextual representations based299

on a hierarchical loss that considers contrast on multiple resolution scales. Here, negative300

samples are obtained both instance-wise and on the temporal axis. Positive samples are301

generated through contextual consistency of augmented views of the input time series.302

• Ti-MAE [22] introduces a non-contrastive representation learning approach, which randomly303

masks parts of an embedded time series and learns to reconstruct it through an autoencoder304

scheme. Both the encoder and decoder are based on transformer blocks.305

• TNC [30] proposes a contrastive learning approach that exploits the local smoothness of time-306

series signals to define neighborhoods over the temporal axis. Their contrastive loss intends307

to distinguish the encoded representations of neighborhood signals from non-neighborhood308

signals.309

• TS-TCC [13] leverages both temporal and contextual contrasting, encouraging similarity310

among different contexts of the same time-series sample while minimizing similarity among311

contexts of different samples. Weak and strong augmentations are used to generate different312

yet correlated views.313

• T-Loss [14] proposes a representation learning approach based on a triplet loss and time-314

based negative sampling. Here, random sub-time series are used to design positive pairs,315

while different time-series instances are used as negative pairs.316

• TST [35] uses a transformer-based model for pre-training on multivariate time series. Their317

training objective is inspired by BERT-style models [11], predicting a time-series signal318

from a randomly masked version thereof.319

Comparison methods for forecasting:320

• Informer [37] is a transformer-based model specifically designed for long-sequence time-321

series forecasting. It proposes an efficient probabilistic attention mechanism achieving322

O(L logL) complexity in time and memory, thereby avoiding the well-known quadratic323

bottleneck of standard attention modules.324

• LogTrans [21] proposes the LogSparse Transformer architecture, which is based on a325

convolutional self-attention block that enhances the incorporation of local context. In this326

way, they achieve super-linear memory complexity, similarly to the Informer.327

• The authors of TCN [4] conducted a systematic experimental study of generic convolutional328

and recurrent architectures for sequence modeling. They find that a simple Temporal329

8



Convolutional Network (TCN) outperforms common recurrent architectures such as LSTMs330

on various tasks and datasets.331

• LSTnet [20] leverages a combination of Convolutional and Recurrent Neural Networks that332

takes into account both short-term local dependencies and long-term trends in sequential333

data.334

• N-BEATS [28] proposes a deep stack of multi-layer fully connected blocks with forward335

and backward residual connections. A particular feature of their network design is that its336

outputs are human-interpretable.337

C Full Experimental Results338

The full results on all datasets of the UCR and UEA archive are reported in Table 3 and 4, respectively.339

Table 5 and 6 show the full results of our forecasting experiments in the uni- and multivariate case,340

respectively.341
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Table 3: Full results for time-series classification on the UCR archive using accuracy as metric. The reported
scores for Ti-MAE are taken from [22] and the scores for all other comparison methods are taken from [32]. Note
that for each method, pre-training and the downstream task are performed for each dataset individually.

UCR Dataset Ours TS2Vec Ti-MAE T-Loss TNC TS-TCC TST

Avg. acc. 0.832 0.829 0.823 0.806 0.761 0.757 0.638
Avg. rank 2.109 2.586 2.656 3.720 4.584 4.512 6.234

ACSF1 0.830 0.900 0.820 0.900 0.730 0.730 0.760
Adiac 0.788 0.762 0.788 0.675 0.726 0.767 0.550
AllGestureWiimoteX 0.776 0.777 0.633 0.763 0.703 0.697 0.259
AllGestureWiimoteY 0.777 0.793 0.682 0.726 0.699 0.741 0.423
AllGestureWiimoteZ 0.749 0.746 0.671 0.723 0.646 0.689 0.447
ArrowHead 0.857 0.857 0.874 0.766 0.703 0.737 0.771
BME 1.000 0.993 1.000 0.993 0.973 0.933 0.760
Beef 0.667 0.767 0.900 0.667 0.733 0.600 0.500
BeetleFly 0.950 0.900 0.900 0.800 0.850 0.800 1.000
BirdChicken 0.800 0.800 1.000 0.850 0.750 0.650 0.650
CBF 0.997 1.000 1.000 0.983 0.983 0.998 0.898
Car 0.850 0.833 0.867 0.833 0.683 0.583 0.550
Chinatown 0.965 0.965 0.985 0.951 0.977 0.983 0.936
ChlorineConcentration 0.754 0.832 0.725 0.749 0.760 0.753 0.562
CinCECGTorso 0.654 0.827 0.971 0.713 0.669 0.671 0.508
Coffee 1.000 1.000 1.000 1.000 1.000 1.000 0.821
Computers 0.772 0.660 0.780 0.664 0.684 0.704 0.696
CricketX 0.767 0.782 0.674 0.713 0.623 0.731 0.385
CricketY 0.751 0.749 0.659 0.728 0.597 0.718 0.467
CricketZ 0.754 0.792 0.718 0.708 0.682 0.713 0.403
Crop 0.763 0.756 0.751 0.722 0.738 0.742 0.710
DiatomSizeReduction 0.987 0.984 0.984 0.984 0.993 0.977 0.961
DistalPhalanxOutlineAgeGroup 0.755 0.727 0.763 0.727 0.741 0.755 0.741
DistalPhalanxOutlineCorrect 0.804 0.761 0.793 0.775 0.754 0.754 0.728
DistalPhalanxTW 0.748 0.698 0.727 0.676 0.669 0.676 0.568
DodgerLoopDay 0.613 0.562 0.613 – – – 0.200
DodgerLoopGame 0.913 0.841 0.739 – – – 0.696
DodgerLoopWeekend 0.978 0.964 0.978 – – – 0.732
ECG200 0.940 0.920 0.910 0.940 0.830 0.880 0.830
ECG5000 0.940 0.935 0.942 0.933 0.937 0.941 0.928
ECGFiveDays 1.000 1.000 0.988 1.000 0.999 0.878 0.763
EOGHorizontalSignal 0.608 0.539 0.558 0.605 0.442 0.401 0.373
EOGVerticalSignal 0.475 0.503 0.547 0.434 0.392 0.376 0.298
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748 0.748
ElectricDevices 0.704 0.721 0.685 0.707 0.700 0.686 0.676
EthanolLevel 0.670 0.468 0.744 0.382 0.424 0.486 0.260
FaceAll 0.873 0.771 0.880 0.786 0.766 0.813 0.504
FaceFour 0.795 0.932 0.875 0.920 0.659 0.773 0.511
FacesUCR 0.908 0.924 0.866 0.884 0.789 0.863 0.543
FiftyWords 0.769 0.771 0.787 0.732 0.653 0.653 0.525
Fish 0.937 0.926 0.897 0.891 0.817 0.817 0.720

(continued on next page)
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Table 3: Full results for time-series classification on the UCR archive (continued from previous page).

UCR Dataset Ours TS2Vec Ti-MAE T-Loss TNC TS-TCC TST

FordA 0.930 0.936 0.818 0.928 0.902 0.930 0.568
FordB 0.790 0.794 0.652 0.793 0.733 0.815 0.507
FreezerRegularTrain 0.998 0.986 0.987 0.956 0.991 0.989 0.922
FreezerSmallTrain 0.980 0.870 0.959 0.933 0.982 0.979 0.920
Fungi 0.989 0.957 0.968 1.000 0.527 0.753 0.366
GestureMidAirD1 0.654 0.608 0.662 0.608 0.431 0.369 0.208
GestureMidAirD2 0.631 0.469 0.546 0.546 0.362 0.254 0.138
GestureMidAirD3 0.331 0.292 0.400 0.285 0.292 0.177 0.154
GesturePebbleZ1 0.738 0.930 0.901 0.919 0.378 0.395 0.500
GesturePebbleZ2 0.677 0.873 0.918 0.899 0.316 0.430 0.380
GunPoint 1.000 0.980 0.993 0.980 0.967 0.993 0.827
GunPointAgeSpan 0.994 0.987 0.994 0.994 0.984 0.994 0.991
GunPointMaleVersusFemale 1.000 1.000 0.997 0.997 0.994 0.997 1.000
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ham 0.733 0.714 0.800 0.724 0.752 0.743 0.524
HandOutlines 0.916 0.922 0.919 0.922 0.930 0.724 0.735
Haptics 0.464 0.526 0.484 0.490 0.474 0.396 0.357
Herring 0.641 0.641 0.656 0.594 0.594 0.594 0.594
HouseTwenty 0.941 0.916 0.941 0.933 0.782 0.790 0.815
InlineSkate 0.471 0.415 0.380 0.371 0.378 0.347 0.287
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000
InsectWingbeatSound 0.590 0.630 0.639 0.597 0.549 0.415 0.266
ItalyPowerDemand 0.963 0.925 0.967 0.954 0.928 0.955 0.845
LargeKitchenAppliances 0.861 0.845 0.787 0.789 0.776 0.848 0.595
Lightning2 0.902 0.869 0.836 0.869 0.869 0.836 0.705
Lightning7 0.808 0.863 0.808 0.795 0.767 0.685 0.411
Mallat 0.950 0.914 0.956 0.951 0.871 0.922 0.713
Meat 0.967 0.950 0.967 0.950 0.917 0.883 0.900
MedicalImages 0.803 0.789 0.771 0.750 0.754 0.747 0.632
MelbournePedestrian 0.958 0.959 0.949 0.944 0.942 0.949 0.741
MiddlePhalanxOutlineAgeGroup 0.649 0.636 0.675 0.656 0.643 0.630 0.617
MiddlePhalanxOutlineCorrect 0.852 0.838 0.811 0.825 0.818 0.818 0.753
MiddlePhalanxTW 0.623 0.584 0.623 0.591 0.571 0.610 0.506
MixedShapes 0.922 0.917 0.922 0.905 0.911 0.855 0.879
MixedShapesSmallTrain 0.877 0.861 0.875 0.860 0.813 0.735 0.828
MoteStrain 0.880 0.861 0.913 0.851 0.825 0.843 0.768
NonInvasiveFetalECGThorax1 0.924 0.930 0.918 0.878 0.898 0.898 0.471
NonInvasiveFetalECGThorax2 0.930 0.938 0.938 0.919 0.912 0.913 0.832
OSULeaf 0.806 0.851 0.736 0.760 0.723 0.723 0.545
OliveOil 0.867 0.900 0.933 0.867 0.833 0.800 0.800
PLAID 0.449 0.561 0.458 0.555 0.495 0.445 0.419
PhalangesOutlinesCorrect 0.834 0.809 0.772 0.784 0.787 0.804 0.773
Phoneme 0.266 0.312 0.229 0.276 0.180 0.242 0.139
PickupGestureWiimoteZ 0.700 0.820 0.840 0.740 0.620 0.600 0.240

(continued on next page)
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Table 3: Full results for time-series classification on the UCR archive (continued from previous page).

UCR Dataset Ours TS2Vec Ti-MAE T-Loss TNC TS-TCC TST

PigAirwayPressure 0.793 0.630 0.240 0.510 0.413 0.380 0.120
PigArtPressure 0.904 0.966 0.760 0.928 0.808 0.524 0.774
PigCVP 0.889 0.812 0.750 0.788 0.649 0.615 0.596
Plane 1.000 1.000 1.000 0.990 1.000 1.000 0.933
PowerCons 0.961 0.961 1.000 0.900 0.933 0.961 0.911
ProximalPhalanxOutlineAgeGroup 0.883 0.834 0.863 0.844 0.854 0.839 0.854
ProximalPhalanxOutlineCorrect 0.883 0.887 0.876 0.859 0.866 0.873 0.770
ProximalPhalanxTW 0.824 0.824 0.829 0.771 0.810 0.800 0.780
RefrigerationDevices 0.571 0.589 0.611 0.515 0.565 0.563 0.483
Rock 0.840 0.700 0.660 0.580 0.580 0.600 0.680
ScreenType 0.480 0.411 0.579 0.416 0.509 0.419 0.419
SemgHandGenderCh2 0.900 0.963 0.838 0.890 0.882 0.837 0.725
SemgHandMovementCh2 0.713 0.860 0.700 0.789 0.593 0.613 0.420
SemgHandSubjectCh2 0.813 0.951 0.813 0.853 0.771 0.753 0.484
ShakeGestureWiimoteZ 0.900 0.940 0.900 0.920 0.820 0.860 0.760
ShapeletSim 1.000 1.000 0.911 0.672 0.589 0.683 0.489
ShapesAll 0.855 0.902 0.840 0.848 0.788 0.773 0.733
SmallKitchenAppliances 0.699 0.731 0.741 0.677 0.725 0.691 0.592
SmoothSubspace 1.000 0.980 0.993 0.960 0.913 0.953 0.827
SonyAIBORobotSurface1 0.918 0.903 0.912 0.902 0.804 0.899 0.724
SonyAIBORobotSurface2 0.858 0.871 0.934 0.889 0.834 0.907 0.745
StarLightCurves 0.979 0.969 0.972 0.964 0.968 0.967 0.949
Strawberry 0.978 0.962 0.970 0.954 0.951 0.965 0.916
SwedishLeaf 0.962 0.941 0.938 0.914 0.880 0.923 0.738
Symbols 0.971 0.976 0.961 0.963 0.885 0.916 0.786
SyntheticControl 1.000 0.997 0.993 0.987 1.000 0.990 0.490
ToeSegmentation1 0.947 0.917 0.890 0.939 0.864 0.930 0.807
ToeSegmentation2 0.908 0.892 0.908 0.900 0.831 0.877 0.615
Trace 1.000 1.000 1.000 0.990 1.000 1.000 1.000
TwoLeadECG 0.999 0.986 0.985 0.999 0.993 0.976 0.871
TwoPatterns 1.000 1.000 0.994 0.999 1.000 0.999 0.466
UMD 1.000 1.000 1.000 0.993 0.993 0.986 0.910
UWaveGestureLibraryAll 0.878 0.930 0.956 0.896 0.903 0.692 0.475
UWaveGestureLibraryX 0.823 0.795 0.814 0.785 0.781 0.733 0.569
UWaveGestureLibraryY 0.762 0.719 0.736 0.710 0.697 0.641 0.348
UWaveGestureLibraryZ 0.769 0.770 0.749 0.757 0.721 0.690 0.655
Wafer 0.998 0.998 0.996 0.992 0.994 0.994 0.991
Wine 0.944 0.870 0.907 0.815 0.759 0.778 0.500
WordSynonyms 0.699 0.676 0.705 0.691 0.630 0.531 0.422
Worms 0.792 0.701 0.779 0.727 0.623 0.753 0.455
WormsTwoClass 0.844 0.805 0.792 0.792 0.727 0.753 0.584
Yoga 0.872 0.887 0.834 0.837 0.812 0.791 0.830
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Table 4: Full results for time-series classification on the UEA archive using accuracy as metric.
The reported scores for all comparison methods are taken from [32]. Note that for each method,
pre-training and the downstream task are performed for each dataset individually.

UEA Dataset Ours TS2Vec T-Loss TNC TS-TCC TST

Avg. acc. 0.738 0.704 0.658 0.670 0.668 0.617
Avg. rank 1.700 2.733 3.500 4.033 3.833 4.633

ArticularyWordRecognition 0.990 0.987 0.943 0.973 0.953 0.977
AtrialFibrillation 0.267 0.200 0.133 0.133 0.267 0.067
BasicMotions 0.925 0.975 1.000 0.975 1.000 0.975
CharacterTrajectories 0.994 0.995 0.993 0.967 0.985 0.975
Cricket 1.000 0.972 0.972 0.958 0.917 1.000
DuckDuckGeese 0.480 0.680 0.650 0.460 0.380 0.620
EigenWorms 0.931 0.847 0.840 0.840 0.779 0.748
Epilepsy 0.986 0.964 0.971 0.957 0.957 0.949
Ering 0.919 0.874 0.133 0.852 0.904 0.874
EthanolConcentration 0.460 0.308 0.205 0.297 0.285 0.262
FaceDetection 0.541 0.501 0.513 0.536 0.544 0.534
FingerMovements 0.590 0.480 0.580 0.470 0.460 0.560
HandMovementDirection 0.432 0.338 0.351 0.324 0.243 0.243
Handwriting 0.428 0.515 0.451 0.249 0.498 0.225
Heartbeat 0.751 0.683 0.741 0.746 0.751 0.746
InsectWingbeat 0.449 0.466 0.156 0.469 0.264 0.105
JapaneseVowels 0.978 0.984 0.989 0.978 0.930 0.978
LSST 0.640 0.537 0.509 0.595 0.474 0.408
Libras 0.900 0.867 0.883 0.817 0.822 0.656
MotorImagery 0.520 0.510 0.580 0.500 0.610 0.500
NATOPS 0.972 0.928 0.917 0.911 0.822 0.850
PEMS-SF 0.884 0.682 0.676 0.699 0.734 0.740
PenDigits 0.987 0.989 0.981 0.979 0.974 0.560
PhonemeSpectra 0.292 0.233 0.222 0.207 0.252 0.085
RacketSports 0.908 0.855 0.855 0.776 0.816 0.809
SelfRegulationSCP1 0.860 0.812 0.843 0.799 0.823 0.754
SelfRegulationSCP2 0.600 0.578 0.539 0.550 0.533 0.550
SpokenArabicDigits 0.992 0.988 0.905 0.934 0.970 0.923
StandWalkJump 0.533 0.467 0.333 0.400 0.333 0.267
UWaveGestureLibrary 0.919 0.906 0.875 0.759 0.753 0.575
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Table 5: Full results for univariate time-series forecasting using MSE and MAE as metrics. The reported scores for all comparison methods are taken from [32].
Note that for each method, pre-training and the downstream task are performed for each dataset individually.

Ours TS2Vec [32] Informer [37] LogTrans [21] N-BEATS [28] TCN [4] LSTnet [20]

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.049 0.169 0.039 0.152 0.098 0.247 0.103 0.259 0.094 0.238 0.075 0.21 0.108 0.284
48 0.079 0.215 0.062 0.191 0.158 0.319 0.167 0.328 0.21 0.367 0.227 0.402 0.175 0.424

ETTh1 168 0.136 0.287 0.134 0.282 0.183 0.346 0.207 0.375 0.232 0.391 0.316 0.493 0.396 0.504
336 0.158 0.315 0.154 0.31 0.222 0.387 0.23 0.398 0.232 0.388 0.306 0.495 0.468 0.593
720 0.23 0.387 0.163 0.327 0.269 0.435 0.273 0.463 0.322 0.49 0.39 0.557 0.659 0.766

24 0.077 0.21 0.09 0.229 0.093 0.24 0.102 0.255 0.198 0.345 0.103 0.249 3.554 0.445
48 0.102 0.247 0.124 0.273 0.155 0.314 0.169 0.348 0.234 0.386 0.142 0.29 3.19 0.474

ETTh2 168 0.153 0.309 0.208 0.36 0.232 0.389 0.246 0.422 0.331 0.453 0.227 0.376 2.8 0.595
336 0.183 0.339 0.213 0.369 0.263 0.417 0.267 0.437 0.431 0.508 0.296 0.43 2.753 0.738
720 0.207 0.368 0.214 0.374 0.277 0.431 0.303 0.493 0.437 0.517 0.325 0.463 2.878 1.044

24 0.017 0.098 0.015 0.092 0.03 0.137 0.065 0.202 0.054 0.184 0.041 0.157 0.09 0.206
48 0.031 0.132 0.027 0.126 0.069 0.203 0.078 0.22 0.19 0.361 0.101 0.257 0.179 0.306

ETTm1 96 0.052 0.174 0.044 0.161 0.194 0.372 0.199 0.386 0.183 0.353 0.142 0.311 0.272 0.399
288 0.109 0.257 0.103 0.246 0.401 0.554 0.411 0.572 0.186 0.362 0.318 0.472 0.462 0.558
672 0.162 0.316 0.156 0.307 0.512 0.644 0.598 0.702 0.197 0.368 0.397 0.547 0.639 0.697

24 0.272 0.386 0.26 0.288 0.251 0.275 0.528 0.447 0.427 0.33 0.263 0.279 0.281 0.287
48 0.303 0.402 0.319 0.324 0.346 0.339 0.409 0.414 0.551 0.392 0.373 0.344 0.381 0.366

Electricity 168 0.337 0.431 0.427 0.394 0.544 0.424 0.959 0.612 0.893 0.538 0.609 0.462 0.599 0.5
336 0.36 0.449 0.565 0.474 0.713 0.512 1.079 0.639 1.035 0.669 0.855 0.606 0.823 0.624
720 0.359 0.453 0.861 0.643 1.182 0.806 1.001 0.714 1.548 0.881 1.263 0.858 1.278 0.906

Avg. 0.169 0.297 0.209 0.296 0.31 0.39 0.37 0.434 0.399 0.426 0.338 0.413 1.099 0.536
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Table 6: Full results for multivariate time-series forecasting using MSE and MAE as metrics. The reported scores for all comparison methods are taken from [32].
Note that for each method, pre-training and the downstream task are performed for each dataset individually.

Ours TS2Vec [32] Informer [37] TCN [4] LogTrans [21] LSTnet [20]

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.504 0.518 0.599 0.534 0.577 0.549 0.767 0.612 0.686 0.604 1.293 0.901
48 0.547 0.548 0.629 0.555 0.685 0.625 0.713 0.617 0.766 0.757 1.456 0.96

ETTh1 168 0.689 0.636 0.755 0.636 0.931 0.752 0.995 0.738 1.002 0.846 1.997 1.214
336 0.78 0.687 0.907 0.717 1.128 0.873 1.175 0.8 1.362 0.952 2.655 1.369
720 0.813 0.69 1.048 0.79 1.215 0.896 1.453 1.311 1.397 1.291 2.143 1.38

24 0.293 0.409 0.398 0.461 0.72 0.665 1.365 0.888 0.828 0.75 2.742 1.457
48 0.412 0.493 0.58 0.573 1.457 1.001 1.395 0.96 1.806 1.034 3.567 1.687

ETTh2 168 0.86 0.737 1.901 1.065 3.489 1.515 3.166 1.407 4.07 1.681 3.242 2.513
336 1.003 0.805 2.304 1.215 2.723 1.34 3.256 1.481 3.875 1.763 2.544 2.591
720 1.013 0.803 2.65 1.373 3.467 1.473 3.69 1.588 3.913 1.552 4.625 3.709

24 0.342 0.41 0.443 0.436 0.323 0.369 0.324 0.374 0.419 0.412 1.968 1.17
48 0.438 0.48 0.582 0.515 0.494 0.503 0.477 0.45 0.507 0.583 1.999 1.215

ETTm1 96 0.482 0.511 0.622 0.549 0.678 0.614 0.636 0.602 0.768 0.792 2.762 1.542
288 0.584 0.576 0.709 0.609 1.056 0.786 1.27 1.351 1.462 1.32 1.257 2.076
672 0.685 0.634 0.786 0.655 1.192 0.926 1.381 1.467 1.669 1.461 1.917 2.941

24 0.274 0.375 0.287 0.374 0.312 0.387 0.305 0.384 0.297 0.374 0.356 0.419
48 0.288 0.384 0.307 0.388 0.392 0.431 0.317 0.392 0.316 0.389 0.429 0.456

Electricity 168 0.301 0.393 0.332 0.407 0.515 0.509 0.358 0.423 0.426 0.466 0.372 0.425
336 0.305 0.398 0.349 0.42 0.759 0.625 0.349 0.416 0.365 0.417 0.352 0.409
720 0.317 0.409 0.375 0.438 0.969 0.788 0.447 0.486 0.344 0.403 0.38 0.443

Avg. 0.546 0.545 0.828 0.635 1.154 0.781 1.192 0.837 1.314 0.892 1.903 1.444
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