Konstantin Ditschuneit

- Home : Berlin, Germany
, Email: kditschuneit@icloud.com @ Phone: (+49) 1622405291
in LinkedIn: https://linkedin.com/in/konstantin-ditschuneit-527379120/
Date of birth: 24/07/1997 Nationality: German
WORK EXPERIENCE
[06/2021 - Current]
Machine Learning Researcher

Merantix Momentum GmbH, Berlin

- Worked as a Machine Learning Researcher on online model pruning, energy demand forecasting, and interpretable neural networks.
- Built a research-specific tech-stack encompassing multiple Google Cloud projects defined using Terraform, a research-focused remote execution framework in Kubernetes, and a shared code repository designed to foster collaboration across research projects.
[06/2019-06/2021] Student group "KITcar": development of an open source simulator KITcar e.V.
- Developed and open-sourced a ROS-based vehicle simulator to test our vehicles,
- implemented a GAN to render simulated images into seemingly real images
- won the Carolo-Cup competition in 2020 and 2021.
[07/2016-09/2016]
Internship: "mobile application developer"

Poolarserver GmbH https://apps.apple.com/us/app/poolaroffice/id1139784626\#? platform=iphone

EDUCATION AND
TRAINING
[2019-2022]
Master's degree in computer science
Karlsruhe Institute of Technology
Final Grade: 1.5 | Deep Learning, Algorithm Engineering, GPU Computing
[2016-2019] Bachelor's degree in physics
Humboldt-Universitöt zu Berlin
Final Grade: 1.6 | Tutor for Linear Algebra
LANGUAGE SKILLS
Mother tongue(s): German
Other Ianguage(s): English C2

PUBLICATIONS

Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

IMLH 2023, 2023
We demonstrate how concurvity can severely impair the interpretability of GAMs and propose a remedy: a conceptually simple, yet effective regularizer which penalizes pairwise correlations of the non-linearly transformed feature variables.

Auto-Compressing Subset Pruning for Semantic Image Segmentation

ACOSP learns a channel selection mechanism for individual channels of each convolution in the segmentation model based on an effective temperature annealing schedule. We show a crucial interplay between providing a high-capacity model at the beginning of training and the compression pressure forcing the model to compress concepts into retained channels.

NAM-CAM: Neural-Additive Models for Semi-Analytic Descriptions of CAM Simulations

FAIM 2023
Using Neural-Additive Models (NAMs), we create a semi-analytic model that improves guided search through the configuration space and reduces convergence time to an optimal parameter set.

Al for Energy Demand Forecasting

Kaggle Challenge \& Blog Post, 2022
We describe our approach to participate in the Energy Demand Forecasting Kaggle challenge. Through an iterative and fast-paced mindset we were able to quickly understand the problem and apply our data scientist skill set to a new domain and even won the challenge.

Self-Supervised Learning

Blog Post, 2022
SSL methods are used for pretraining models on unlabeled data to significantly reduce the amount of labeled data required for fine-tuning downstream tasks.

